HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12 MATHEMATICS EXTENSION 2

2005 HSC COURSE

TRIAL HSC ~ASSESSMENT TASK 4

Examiners ~ J. Dillon and G. Rawson

GENERAL INSTRUCTIONS

- READING TIME 5 MINUTES.
- WORKING TIME THREE HOURS.
- ATTEMPT ALL QUESTIONS.
- OUESTIONS ARE OF EQUAL VALUE.
- ALL NECESSARY WORKING SHOULD BE SHOWN IN EVERY QUESTION.
- THIS PAPER CONTAINS EIGHT (8) OUESTIONS.
- TOTAL MARKS 120 MARKS

- Marks may not be awarded for Careless or badly arranged work.
- BOARD APPROVED CALCULATORS MAY BE USED.
- A TABLE OF INTEGRALS IS SUPPLIED.
- EACH QUESTION IS TO BE STARTED IN A NEW EXAMINATION BOOKLET.
- THIS ASSESSMENT TASK MUST NOT BE REMOVED FROM THE EXAMINATION ROOM.

STUDENT NAME / NUMBER:			
	***	* * * * * * * * * * * * * * * * * * *	
TEACHER:			·.

QUESTION 1: (USE A SEPARATE ANSWER BOOKLET)

Marks

(a) Find:

(i)
$$\int \frac{1}{x \ln x} dx$$

2

(ii)
$$\int \frac{x}{x^2 + 2x + 5} \, dx$$

3

(b) Evaluate, using integration by parts,
$$\int_{0}^{\frac{\pi}{2}} x \cos x \, dx$$

2

(c) Evaluate, using partial fractions,
$$\int_{1}^{3} \frac{dx}{x^{2} + 2x}$$
.

3

(d) The integral
$$I_n$$
 is defined by $I_n = \int_0^1 x^n e^{-x} dx$.

Y A CAR A TRAIN CONSCIANCE BEEN THE TO

(i) Show that
$$I_n = nI_{n-1} - e^{-1}$$
.

2

(ii) Hence, show that
$$I_3 = 6 - 16e^{-1}$$
.

2

QUESTION 2: (USE A SEPARATE ANSWER BOOKLET)

Marks

- (a) Given $z = \sqrt{6} \sqrt{2}i$, find:
 - (i) $Re(z^2)$;
 - (ii) |z|;
 - (iii) $\arg z$;
 - (iv) z^4 in the form x + iy.
- (b) The equations $|z 8 6i| = 2\sqrt{10}$ and $\arg z = \tan^{-1} 2$ both represent loci on the Argand plane.
 - (i) Write down the Cartesian equations of the loci, and hence show that the points of intersection of the loci are 2 + 4i and 6 + 12i.
 - (ii) Sketch both loci on the same diagram, showing their points of intersection. 2
 (You need not show the intercepts with the axes.)

(c)

The diagram above shows the fixed points A, B and C in the Argand plane, where AB = BC, $\angle ABC = \frac{\pi}{2}$, and A, B and C are in anticlockwise order. The point A represents the complex number $z_1 = 2$ and the point B represents the complex number $z_2 = 3 + \sqrt{5}i$.

- (i) Find the complex number z_3 represented by the point C.
- (ii) D is the point on the Argand plane such that ABCD is a square. 2 Find the complex number z_4 represented by D.

- (a) Show that the equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$.
 - (ii) Show that the equation of the normal at P is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$

- (i) Show that the equation of the chord of contact PQ is $\frac{xx_0}{16} + \frac{yy_0}{9} = 1$.

 (You may assume that the tangent at P has equation $\frac{xx_1}{16} + \frac{yy_1}{9} = 1$, and similarly for Q)
- (ii) If the chord PQ touches the circle $x^2 + y^2 = 9$, then by considering the distance of the chord from the origin, or otherwise, show that the point $T(x_0, y_0)$ satisfies $\frac{9x_0^2}{256} + \frac{y_0^2}{9} = 1$.

HAHS Extension 2/Trial HSC 2005

QUESTION 4: (USE A SEPARATE ANSWER BOOKLET)

MARKS

- (a) (i) Let P(x) be a polynomial of degree 4 with a zero of multiplicity 3. Show that P'(x) has a zero of multiplicity 2.
 - (ii) Hence, or otherwise, find all zeros of $P(x) = 8x^4 25x^3 + 27x^2 11x + 1$, given that it has a zero of multiplicity 3.
 - (iii) Sketch $y = 8x^4 25x^3 + 27x^2 11x + 1$, clearly showing the intercepts on the coordinate axes. You do not need to give the coordinates of turning points or points of inflection.
- (b) (i) Show that the general solution of the equation $\cos 5\theta = -1$ is given by $\theta = (2n+1)\frac{\pi}{5}, n = 0, \pm 1, \pm 2, \dots$

Hence, solve the equation $\cos 5\theta = -1$, for $0 \le \theta \le 2\pi$.

- (ii) Use De Moirve's Theorem to show that $\cos 5\theta = 16\cos^5 \theta 20\cos^3 \theta + 5\cos \theta.$
- (iii) Find the exact trigonometric roots of the equation $16x^5 20x^3 + 5x + 1 = 0$
- (iv) Hence, find the exact values of $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$ and $\cos \frac{\pi}{5} \times \cos \frac{3\pi}{5}$ and factorise $16x^5 20x^3 + 5x + 1 = 0$ into irreducible factors over the rational numbers.

QUESTION 5: (USE A SEPARATE ANSWER BOOKLET)

Marks

(a) In the diagram below, the curve $y = \frac{2x}{1+x^2}$ is sketched.

(i) Find the coordinates of the turning points A and B.

(ii) Find the coordinates of the inflection points X and X.

3

(b) Draw separate sketches of:

$$(i) y = \frac{|2x|}{1+x^2}$$

$$y = \frac{1+x^2}{2x} \qquad z \qquad \frac{1+x^2}{2x}$$

(iii)
$$y^2 = \frac{2x}{1+x^2}$$

(iv)
$$y = \log_e\left(\frac{2x}{1+x^2}\right)$$

QUESTION 5 CONTINUES ON THE NEXT PAGE

1

QUESTION 4: (USE A SEPARATE ANSWER BOOKLET)

Marks

- Let P(x) be a polynomial of degree 4 with a zero of multiplicity 3. (i) (a) Show that P'(x) has a zero of multiplicity 2.
 - 2
 - Hence, or otherwise, find all zeros of $P(x) = 8x^4 25x^3 + 27x^2 11x + 1$, 2 (ii) given that it has a zero of multiplicity 3.
 - Sketch $y = 8x^4 25x^3 + 27x^2 11x + 1$, clearly showing the intercepts 1 (iii) on the coordinate axes. You do not need to give the coordinates of turning points or points of inflection.
- Show that the general solution of the equation $\cos 5\theta = -1$ is given by (i) (b)
 - $\theta = (2n+1)\frac{\pi}{5}, n = 0, \pm 1, \pm 2, \dots$

Hence, solve the equation $\cos 5\theta = -1$, for $0 \le \theta \le 2\pi$.

Use De Moirve's Theorem to show that (ii) $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$ 3

Find the exact trigonometric roots of the equation (iii) $16x^5 - 20x^3 + 5x + 1 = 0$

2

3

Hence, find the exact values of $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$ and $\cos \frac{\pi}{5} \times \cos \frac{3\pi}{5}$ (iv) and factorise $16x^5 - 20x^3 + 5x + 1 = 0$ into irreducible factors over the rational numbers.

- (c) (i) Show that the equation $kx^3 + (k-2)x = 0$ can be written in the form $\frac{2x}{1+x^2} = kx$.
 - (ii) Using a graphical approach based on the curve $y = \frac{2x}{1+x^2}$, or otherwise, find the real values of k for which the equation $kx^3 + (k-2)x = 0$ has exactly one real root.

QUESTION 6: (USE A SEPARATE ANSWER BOOKLET)

Marks

(a) A Mini-League football has a volume the same as the volume generated

3

by rotating the region inside the ellipse $\frac{x^2}{20} + \frac{y^2}{15} = 1$ about the x-axis.

Find the volume of this football.

2 anz sy

(b) The area bounded by the curve $y = 2x - x^2$ and the x-axis is rotated through $\mathbb{Z} \mathcal{L} \mathcal{I}$ 180° about the line x = 1.

(i) Show that the volume, ΔV , of a representative horizontal slice of width Δy is given by

 $\Delta V = \pi (x-1)^2 \Delta y$

2

Hence show that the volume of the solid of revolution is given by
$$V = \lim_{\Delta y \to 0} \sum_{v=0}^{1} \pi (1-y) \Delta y$$

Hence, find the volume of the solid of revolution

(ii)

(iii)

The region shown below, bounded by the curve $y = \frac{x^2}{x^2+1}$, the x-axis and (c) the line x = 2, is rotated about the line x = 4.

Using the method of cylindrical shells, show that the volume ΔV of a 3 (i) Shell distant x from the origin and with thickness Δx is given by

$$\Delta V = 2\pi (4-x)(1-\frac{1}{1+x^2})\Delta x$$

(ii)

(a)

In the diagram above, AB = AD = AX and $XP \perp DC$.

Prove that $\angle DBX = 90^{\circ}$ (i)

2

Hence, or otherwise, prove that AB = AP. (ii)

3

Show that $a^2 + b^2 > 2ab$, where a and b are distinct positive real numbers. (i) (b)

 $\Rightarrow ab + bc + ca$, where a, b and c are distinct Hence show that $a^2 + b^2 + c^2$ (ii) positive real numbers.

Hence, or otherwise, prove that
$$\frac{a^2b^2 + b^2c^2 + c^2a^2}{a + b + c} > abc, (newc)$$
where a, b and c are distinct positive real numbers.

(c)

(ijii)

A sequence, T_n , is such that $T_1 = 3$, $T_2 = 5$ and $T_{n+2} = 4T_{n+1} - 3T_n$. Prove by mathematical induction that $T_n = 3^{n-1} + 2$.

Marks

(a) Show that $\int_{n}^{2n} \frac{dx}{\sqrt{x}} = 2\sqrt{n} \left(\sqrt{2} - 1 \right).$

2

In the diagram above, the graph of $y = \frac{1}{\sqrt{x}}$ has been drawn, and n upper and lower rectangles have been constructed between x = n and x = 2n, each of width 1 unit.

Let
$$S_n = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \frac{1}{\sqrt{n+3}} + \dots + \frac{1}{\sqrt{2n}}$$
.

(α) By considering the sums of areas of upper and lower rectangles, show that:

$$2\sqrt{n}(\sqrt{2}-1)+\frac{1-\sqrt{2}}{\sqrt{2n}} < S_n < 2\sqrt{n}(\sqrt{2}-1)$$

(β) Hence find, correct to four decimal places,

$$\frac{1}{\sqrt{10^8 + 1}} + \frac{1}{\sqrt{10^8 + 2}} + \frac{1}{\sqrt{10^8 + 3}} + \dots + \frac{1}{\sqrt{2 \times 10^8}}$$

1

In the diagram, \mathcal{T} is a circle with exterior point T. From T, tangents are drawn to the points A and B on \mathcal{T} and a line TC is drawn, meeting the circle at C. The point D is the point on \mathcal{T} such that BD is parallel to TC. The line TC cuts the line AB at F and the line AD at E.

Copy or trace the diagram.

(i)	Prove that ΔTFA is similar to ΔTAE .	3
	Deduce that $TE.TF = TB^2$.	2
(ii)	Deduce that TEST = ID : 100 in the second of	_
(iii)	Show that $\triangle EBT$ is similar to $\triangle BFT$.	2
(iv)	Prove that $\triangle DEB$ is isosceles.	1

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C \,, \ a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax + C \,, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C \,, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right) + C, \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2} \right) + C$$

NOTE: $\ln x = \log_e x$, x > 0

	Year 12 Mathematics Extension 2	Trial HSC Examination 2009
Question 1	Colorada and Maria Colorada	CM
ER An	Outcomes Addressed in this Quest plies further techniques of integration, including partial	ion
nec	urrence formulae, to problems	tractions, integration by parts and
Outcome	Solutions	Marking Guidelines
PR (a) (i)	$\int \frac{1}{\sin x} dx \qquad \text{Let } u = \ln x$	
CO (6) (1)	1 xinx 120 x inx	Correct solution2
*-	Then $\frac{du}{dx} = \frac{1}{x}$. $dx = xdu$ Hence, $\int \frac{1}{x \ln x} dx = \int \frac{du}{u} = \ln u + c = \ln(\ln x) + c$	Appropriate substitution done correctly
E8 (a) (ii)	$\int \frac{xdx}{x^2 + 2x + 5}$ $= \int \frac{\left[\frac{1}{2}(2x + 2) - 1\right]}{x^2 + 2x + 5} dx$ $= \frac{1}{2} \int \frac{2x + 2}{x^2 + 2x + 5} dx - \int \frac{dx}{x^2 + 2x + 5}$ $= \frac{1}{2} \ln(x^2 + 2x + 5) - \int \frac{dx}{(x + 1)^2 + 4}$ $= \frac{1}{2} \ln(x^2 + 2x + 5) - \frac{1}{2} \tan^{-3} \left(\frac{x + 1}{2}\right) + c$	Correct solution
: З (b)	$\int_{0}^{\frac{\pi}{2}} x \cos x dx \text{Let} u = x \qquad \frac{dv}{dx} = \cos x$ $\frac{du}{dx} = 1 \qquad v = \sin x$ $\text{Honce, } \int_{0}^{\frac{\pi}{2}} x \cos x dx = \left[x \sin x\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x dx$ $= \frac{\pi}{2} - \left[\cos x\right]_{0}^{\frac{\pi}{2}}$	Correct solution
	$=\frac{\pi}{2}-i$	

Year 12	Mathematics Extension 2	TRIAL Examination 2005
Question 1	io. 2 Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
E3. use	s the relationship between algebraic and geometric represer	ntations of complex numbers
Dutcome	Solutions	Marking Guidelines
E3 (a)(f)	$Re(z^2) = Re(\sqrt{6} - \sqrt{2}i)^2$ $= Re(6 - 4\sqrt{3}i - 2)$ $= 4$	1 mark: correct answer
[3] (a)(ii)	$ \mathbf{z} = \sqrt{\sqrt{6}^2 + \sqrt{2}^2}$ $= 2\sqrt{2}$	1 mark : correct answer
3 (a)(iii)	$\tan \alpha = \frac{\sqrt{2}}{\sqrt{6}} = \frac{1}{\sqrt{3}}$ $\alpha = \frac{\pi}{6}$ $\sin \alpha z = -\frac{\pi}{6}$ $\sin \alpha z = -\frac{\pi}{6}$ $\sin \alpha z = -\frac{\pi}{6}$	(basically, correct method with
3 (a)(iv)	From (i), $z^2 = 4 - 4\sqrt{3}i$. So $z^4 = \left[4(1 - \sqrt{3}i)\right]^2$	incorrect values) 2 marks : correct answer
	$= 16(1 - 3 - 2\sqrt{3}i)$ $= -32(1 + \sqrt{3}i)$	<u>1 mark</u> : substantially correct (basically, correct method with incorrect values)
3 (h)(i)	arg $z = \tan^{-1} 2$ becomes $y = 2x$, $(x \neq 0)$ and $ z - 8 - 6i = 2\sqrt{10}$ becomes $(x - 8)^2 + (y - 6)^2 = 40$. Points of intersection occur when	3 marks : correct solution (NB: must solve simultaneously to show these are the only points of intersection)
	$(x-8)^{2} + (2x-6)^{2} = 40$ $x^{2} - 16x + 64 + 4x^{2} - 24x + 36 = 40$ $5x^{2} - 40x + 60 = 0$ $x^{2} - 8x + 12 = 0$ $(x-6)(x-2) = 0$ $x = 6 \text{ or } 2$	2 marks: substantially correct 1 mark: demonstrating some knowledge of the cartesian equations
	Points of intersection are $z = 6 + 12i$ and $z = 2 + 4i$	

E % (c)	$\frac{1}{x(x+2)} = \frac{1}{2} \left(\frac{1}{x} - \frac{1}{x+2} \right)$	Correct solution 3
	$\int_{1}^{3} \frac{1}{x(x+2)} dx = \frac{1}{2} \left(\int_{1}^{3} \left(\frac{1}{x} - \frac{1}{x+2} \right) dx \right)$	Applies method of partial fractions correctly, but fails to get the correct answer 2
	$= \frac{1}{2} \left[\ln x - \ln(x+2) \right]_{1}^{3}$ $= \frac{1}{2} \left[\ln \left(\frac{3}{5} \right) - \ln \left(\frac{1}{3} \right) \right]$	Reasonable attempt to use the method of partial fractions 1
	$=\frac{1}{2}\ln\left(\frac{9}{5}\right)$	
E 8 (d) (i)	$l_n = \int x^n e^{-x} dx$ Let $u = x^n$ $\frac{dv}{dx} = e^{-x}$	Correct solution 2
	$\frac{du}{dx} = nx^{a-1} \qquad v = -e^{-a}$	Reasonable attempt to use the method of IBP1
	Hence, $I_n = \left[-e^{-x}x^n \right]_0^1 - \int_0^1 -e^{-x}nx^{n-1}dx$ = $-e^{-1} + nI_{n-1}$	
	$= nI_{s-1} - e^{-1}$ QED	
8 (d) (ii)	Using the recurrence relation,	Correct solution 3
	$I_3 = 3I_2 - e^{-1}$ $I_2 = 2I_1 - e^{-1}$ $I_1 = I_0 - e^{-1}$	Applies recurrence relation correctly, but fails to get the correct answer
	Also, $I_0 = \int_0^1 e^{-x} dx = \left[-e^{-x} \right]_0^1 = -e^{-1} + 1$	Reasonable attempt to use the recurrence relation 1
	Hence, $I_1 = -e^{-1} + 1 - e^{-1} = 1 - 2e^{-1}$ $I_2 = 2(1 - 2e^{-1}) - e^{-1} = 2 - 5e^{-1}$	
	$I_3 = 3(2-5e^{-1})-e^{-1} = 6-16e^{-1}$ QED	
		·

Year 12	Mathematics Extension 2	TRIAL Examination 2005
Question 1		L
1000	Outcomes Addressed in this Question	
E3 uses the relationship between algebraic and geometric representations of complex numbers and of cenic sections uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving coals sections and polynomials		
Outcome	Solutions	Marking Guidelines
E4 (a)(i)	$\frac{dy}{dy} = \frac{dy/d\theta}{dx/d\theta}$ $= \frac{b \sec^2 \theta}{a \sec \theta \tan \theta}$ $= \frac{b \sec \theta}{a \tan \theta}$ $\therefore \text{ Equation of tangent at }$ $y - b \tan \theta = \frac{b \sec \theta}{a \tan \theta} (x - a \sec \theta)$ $\frac{y \tan \theta}{b} - \tan^2 \theta = \frac{x \sec \theta}{a} - \sec^2 \theta$ $1 = \frac{x \sec \theta}{a} - \frac{y \tan \theta}{b}$	2 mark: correct solution 1 mark: susbstantially correct including correct expression for
E4 (a)(ii)	Equation of normal is $y - b \tan \theta = -\frac{a \tan \theta}{b \sec \theta} (x - a \sec \theta)$ $\frac{by}{\tan \theta} b^2 = -\frac{ax}{\sec \theta} + \frac{ax}{a^2}$ $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$	2 mark: correct solution 1 mark: susbstantially correct, including correct expressions subbed into point-gradient formula.
E4 (a)(iii)	Equation of asymptote given is $y = \frac{b}{a}x(a,b>0)$ ie $m_{QR} = \frac{b}{a}$. At Q , $x = a \sec \theta$ so $y = \frac{b}{a}x = \frac{b}{a}a \sec \theta = b \sec \theta$ ie Q is $(a \sec \theta, b \sec \theta)$ Normal crosses x -axis at $y = 0$, so $\frac{ax}{\sec \theta} + \frac{b \times 0}{\tan \theta} = a^2 + b^2$ $x = \frac{(a^2 + b^2)\sec \theta}{a}$ ie G is $\left(\frac{(a^2 + b^2)\sec \theta}{a}, 0\right)$	3 marks: correct solution 2 marks: sushstantially correct including correct expression for point G, and correctly finding one gradient. 1 mark: partially correct, including correct expression for point G, or correctly finding on gradient.

	Year 12 Mathematics Extension 2	Trial HSC Examination 200:
Question !		C3
E4 use	Outcomes Addressed in this Quest	ion
no use suc	s efficient techniques for the algebraic manipulation rec h as those involving conic sections and polynomials	quired in dealing with questions
Outcome	Solutions	Marking Guidelines
E4 (a) (i)	For $P(x)$ to have a zero with multiplicity of 3, we can	Correct solution 2
	write $P(x)$ as $P(x) = (x - \alpha)^3 Q(x)$ where $Q(\alpha) \neq 0$.	
	Differentiating $P(x)$ gives	Substantially correct solution
	$P'(x) = (x-\alpha)^3 Q'(x) + 3(x-\alpha)^2 Q(x)$	
	$=(x-\alpha)^2[(x-\alpha)Q'(x)+3Q(x)]$	
	$=(x-\alpha)^2R(x)$	
	where $R(\alpha) \neq 0$.	
	So $P(x)$ has a zero of multiplicity 2.	
84 (a) (ii)	Let $P(x) = 8x^4 - 25x^3 + 27x^2 - 11x + 1$ and let $x = \alpha$?	ce Correct solution 2
	the aero of multiplicity 3.	Correct solution
	Differentiating	Substantially correct solution
	$P'(x) = 32x^3 - 75x^2 + 54x - 11$	1
	$P''(x) \approx 96x^2 - 150x + 54$	-
1	$=6(16x^2-25x+9)$	
	=6(x-1)(16x-9)	
	Partie 6 794	
ì	So the zeros of $P^*(x)$ are $x = 1$ and $x = \frac{9}{16}$.	
	Testing $x = 1$. $P(1) = 0$ and $P'(0) = 0$, so	
	$P(x) = (x-1)^3 Q(x).$	
	Let $x = \beta$ be the other zero.	
	$\alpha + \alpha + \alpha + \beta = \frac{25}{2}$	
	8	
	$\beta = \frac{25}{8} - 3\alpha = \frac{25}{8} - 3 = \frac{1}{8}$	ļ
ł	So, the zeros of $P(x) = 8x^4 - 25x^3 + 27x^2 - 11x + 1$ are	
		'
	$x = 1, 1, 1, \frac{1}{8}$.	
	-	
E8(a) (iii)	•	Correct solution 1
````		
	Y /	İ
1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
1		
	-	
	•	1
ĺ	•	1





	Year 12 Mathematics Extension 2	Trial HSC Examination 200
Question 1		9ee
	Outcomes Addressed in this Que	ation
ки Ар	plies further techniques of integration, including parti	al fractions, integration by parts and
Outcome	urrence formulae, to problems	
	Solutions	Marking Guidelines
28 (a) (i)	$\int \frac{1}{x \ln x} dx \qquad \text{let } u = \ln x$	Correct solution2
	Then $\frac{du}{dx} = \frac{1}{x}$ : $dx = xdu$	Appropriate substitution done correctly
	Hence, $\int \frac{1}{x \ln x} dx = \int \frac{du}{u} = \ln u + c = \ln(\ln x) + c$	OR Correct modified primitive or equivalent ment but fails to get
		the correct solution
38 (a) (ii)	$\int \frac{xdx}{x^2 + 2x + 5}$	Correct solution 3
	$= \int \frac{\left[\frac{1}{2}(2x+2)-1\right]}{x^2+2x+5} dx$	Decomposes correctly into two known integrals, but fails to
	$=\frac{1}{2}\int \frac{2x+2}{x^2+2x+5}dx-\int \frac{dx}{x^2+2x+5}$	obtain correct answer 2  Partially decomposes into one of
	$= \frac{1}{2} \ln(x^2 + 2x + 5) - \int \frac{dx}{(x+1)^2 + 4}$	two known integrals and fulls to obtain correct answer
	$= \frac{1}{2}\ln(x^2 + 2x + 5) - \frac{1}{2}\tan^{-1}\left(\frac{x+1}{2}\right) + c$	
8 (ъ)	$\int_{1}^{2} x \cos x  dx  \text{Let}  u = x \qquad \frac{dv}{dx} = \cos x$	
. (0)	0 443	Correct solution 2
	$\frac{du}{dx} = 1 \qquad v = \sin x$	Reasonable attempt to use the method of IBP
	Hence, $\int x \cos x  dx = \left[ x \sin x \right]_0^2 - \int \sin x  dx$	
	$=\frac{\pi}{2}-[\cos x]_0^{\ell}$	
	$=\frac{\pi}{2}-1$	
		1

	Mathematics Extension 2	TRIAL Examination 2005
Question N		
	Outcomes Addressed in this Question	
E3, use	s the relationship between algebraic and geometric represen	ntations of complex numbers
Outcome	Solutions	Marking Guidelines
	- (1) - (5 5)	
(i)(a) (i)	$Re(z^2) = Re(\sqrt{6} - \sqrt{2}i)^2$	
	$= \operatorname{Re}(6 - 4\sqrt{3}i - 2)$	1 mark : correct answer
	=4	The state of the s
		A LONG TO SERVICE STATE OF THE
[3 (a)(ij)	$ z  = \sqrt{\sqrt{6}^2 + \sqrt{2}^2}$	1 mark : correct answer
	= 2./5	I MINITE . CONTECT MINWET
	- 242	ļ
	S. C. C.	
3 (a)(iii)	$\tan \alpha = \frac{\sqrt{2}}{\sqrt{6}} = \frac{1}{\sqrt{3}}$ $Im(z)_{\phi}$	
~ (w)(ma)	$\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{3}}$ $\lim(z)_{\phi}$	2 marks : correct answer
	_ π √6	l <del></del>
** *	$\alpha = \frac{\pi}{6}$ Re(x)	
	so $\arg z = -\frac{\pi}{6}$	(hasically, correct method with
	6	incorrect values)
	1.2 44	
3 (a)(iv)	From (i), $z^2 = 4 - 4\sqrt{3}i$ .	
,,,,	So $z^4 = [4(1-\sqrt{3}i)]^2$	2 marks : correct answer
		1 mark : substantially correct
	$=16(1-3-2\sqrt{3}i)$	(basically, correct method with
	$=-32(1+\sqrt{3}i)$	incorrect values)
	, , , , ,	
100		
3 (h)(i)	$\arg z = \tan^{-1} 2 \text{ hecomes } y = 2x, (x \neq 0)$	3 marks : correct solution
	and $ z-8-6i  = 2\sqrt{10}$ becomes $(x-8)^2 + (y-6)^2 = 40$ .	(NB: must solve simultaneously
		to show these are the only point
	Points of intersection occur when	of intersection)
	$(x-8)^2 + (2x-6)^2 = 40$	2 marks : substantially correct
	$x^2 - 16x + 64 + 4x^2 - 24x + 36 = 40$	
	$5x^2 - 40x + 60 = 0$	1 mark : demonstrating some
j	$r^2 - 8r + 12 = 0$	knowledge of the cartesian
	(x-6)(x-2)=0	equations
	(x-6)(x-2)=0 x=6  or  2	* ,
	x = 0 or 2	
l	.: Points_of intersection are	
	z = 6 + 12i and $z = 2 + 4i$	l

E8 (c)	$\begin{vmatrix} \frac{1}{x(x+2)} = \frac{1}{2} \left( \frac{1}{x} - \frac{1}{x+2} \right) \\ \frac{1}{x^2} = \frac{1}{x^2} \left( \frac{1}{x^2} - \frac{1}{x+2} \right) $	Correct solution
	$\int_{1}^{3} \frac{1}{x(x+2)} dx = \frac{1}{2} \left( \int_{1}^{3} \left( \frac{1}{x} - \frac{1}{x+2} \right) dx \right)$	get the correct answer 2
	$= \frac{1}{2} \left[ \ln x - \ln(x+2) \right]_{i}^{3}$ $= \frac{1}{2} \left[ \ln \left( \frac{3}{5} \right) - \ln \left( \frac{1}{3} \right) \right]$	Reasonable attempt to use the method of partial fractions 1
	$=\frac{1}{2}\ln\left(\frac{9}{5}\right)$	
E <b>8</b> (d) (i)	dx	Correct solution 2
	$\frac{du}{dx} = nx^{n-1}  v = -e^{-x}$	Reasonable attempt to use the method of IBP1
	Hence, $I_n = \left[ -e^{-x}x^n \right]_0^1 - \int_0^1 -e^{-x}nx^{n-1}dx$ = $-e^{-1} + nI_{n-1}$	
	$= nI_{n-1} - e^{-1}$ QED	
8 (d) (ii)	Using the recurrence relation,	Correct solution 3
	$I_1 = 3I_2 - e^{-1}$ $I_2 = 2I_1 - e^{-1}$ $I_1 = I_0 - e^{-1}$	Applies recurrence relation correctly, but fails to get the correct answer
	Also, $I_0 = \int_0^1 e^{-x} dx = \left[ -e^{-x} \right]_0^1 = -e^{-1} + 1$	Reasonable attempt to use the recurrence relation 1
	Hence, $I_1 = -e^{-1} + 1 - e^{-1} = 1 - 2e^{-1}$ $I_2 = 2(1 - 2e^{-1}) - e^{-1} = 2 - 5e^{-1}$	
	$I_3 = 3(2-5e^{-1}) - e^{-1} = 6-16e^{-1}$ QED	
	-	·
	,	



		Product of roots = 16	Correct value of $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$
		$-\left(\cos\frac{\pi}{5}\times\cos\frac{3\pi}{5}\right)^2 = -\frac{1}{16}$	or $\cos \frac{\pi}{5} \times \cos \frac{3\pi}{5}$ only 1
		$\cos\frac{\pi}{5} \times \cos\frac{3\pi}{5} = \pm\frac{1}{4}$	OR Attempt at factorisation of given polynomial
		Since $\cos \frac{\pi}{5} > 0$ and $\cos \frac{3\pi}{5} < 0$ ,	polynomial
		$\cos\frac{\pi}{5} \times \cos\frac{3\pi}{5} = -\frac{1}{4}$	
		This means that $\cos \frac{\pi}{5}$ and $\cos \frac{3\pi}{5}$ are the roots of	
		$x^2 + \left(-\frac{1}{2}\right)x + \left(-\frac{1}{4}\right) = 0$	
		$4x^2-2x\cdots 1=0$	·
		Hence, $16x^5 - 20x^3 + 5x + 1 = (x+1)(4x^2 - 2x - 1)^2$	
l	· [		
			the second
	ĺ		
		•	i
			- 1



~	No. 5 Solutions and Marking Guidelines		
Outcomes Addressed in this Overtion			
E6 con	combines the ideas of algebra and calculus to determine the important features of the graphs of		
Outcome	le variety of functions		
Anteonie	Solutions	Marking Guidelines	
36 (a) (i)	By the quotient rule.	Correct solution 2	
		Confect solution 2	
	$y' = \frac{(1+x^2) \cdot 2 - 2x \cdot 2x}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2}$	Correctly applies the quotient	
		rule, but does not determine	
	Turning points are where $y'=0$ ,	coordinates of turning points	
	$y'=0$ when $x=\pm 1$	1	
	Turning points are $A(1, 1)$ and $B(-1, -1)$		
6 (a) (ii)	By the quotient rule,	Correct solution 3	
	$y'' = \frac{\left(1 + x^2\right)^2 \cdot \left(-4x\right) - 2\left(1 - x^2\right) \cdot 4x\left(1 + x^2\right)}{\left(1 + x^2\right)^4}$		
	$y'' = \frac{1}{(1-2)^4}$	Correctly applies the quotient	
		rule, but does not determine	
	$=\frac{\left(1+x^2\right)^2\left(-4x-4x^3-8x+8x^3\right)}{\left(1+x^2\right)^4}$	coordinates of the points of inflection 2	
i	= \( \frac{1}{1 \cdot 2} \)^4	OR	
-		Reasonable attempt to use	
	$-4x(x^2-3)$	quotient rule and then find the	
	$=\frac{4x(x^2-3)}{(1+x^2)^3}$	points of inflection 2	
	Inflexion points are where $y^* = 0$ ,	Attempts to use the quotient rul	
- 1	*	to determine points of inflection	
1	$y'' = 0$ when $x = 0$ or $\pm \sqrt{3}$		
	Points of inflexion are $P\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$ and $Q\left(-\sqrt{3}, -\frac{\sqrt{3}}{2}\right)$	OR	
1	(10, 2)	Attempts to find the points of inflection by some method	
	*	1	
(4) (5)		•	
6 (b) (i)	t,	Correct graph 1	
	1		
į			
	1,-		
	1 1 2 2 3		
- 1	,		
1	4		
Ī	'		
1	· [		
	1		
	ļ		
1			

	Year 12 Mathematics Extension 2 Trial HSC Examination 2005				
1	Question No. 6 Solutions and Marking Guidelines				
ı	Outcomes Addressed in this Question  70 uses the techniques of slicing and cylindrical shells to determine volumes				
1	Outcome	Solutions			
Ì		Sylations	Marking Guidelines		
	E7 (a)	$\frac{x^2}{20} + \frac{y^2}{15} = 1$	Correct solution 3		
		$y = \sqrt{15\left(1 - \frac{x^2}{20}\right)}$	Solution indicating an expression to be evaluated in order to determine the volume and correctly determining this		
1		$V = \pi \int_{-\sqrt{20}}^{\sqrt{20}} y^2 dx$	volume		
		$V = 2\pi \int_{0}^{\sqrt{20}} 15 \left(1 - \frac{x^2}{20}\right) dx$	expression to be evaluated in order to determine the volume		
		$V = 30\pi \left[ x - \frac{x^3}{60} \right]_0^{\sqrt{m}} = 40\pi \sqrt{5} \text{ unit}^3$	, , , , , , , , , , , , , , , , , , ,		
ŀ	E7 (b) (i)	Radius of strip is $(x-1)$ , width of strip is $\Delta y$ $\therefore A = \pi(x-1)^2$ and hence	Correct solution 2		
ı		$\Delta V = A \times \Delta y = \pi (x - 1)^2 \Delta y$	Solution without sufficient		
ĺ		$\Delta V = A \times \Delta y = \pi (x - 1)^{\alpha} \Delta y$	justification 1		
	E7 (b) (ii)	$y = 2x - x^2$	Correct solution 2		
1		$x^2 - 2x = -y$	Solution without sufficient		
1		$(x-1)^2 = 1 - y$	justification		
ı		$\therefore \Delta V = \pi (1 - y) \Delta y$			
l		The volume of the solid is the sum of all strips from			
l		y=0 to $y=1$			
		$\therefore V = \lim_{\Delta y \to 0} \sum_{y=0}^{1} \pi (1-y) \Delta y$			
	E7(b) (iii)	$V = \pi \int_{0}^{1} (1 - y) dy$	Correct solution 2		
		$=\pi\left[y-\frac{y^2}{2}\right]_0^1$	Correct statement for volume, with volume incorrectly determined		
		$=\frac{\pi}{2}$ unit ³	document of the second		
			·		
L.	1				

E7 (c) (i)	Radius of shell is $(4-x)$ and height is $y$	Correct solution 3
	A typical shell when cut open looks like $2\pi(4-x)$ $A = 2\pi(4-x)y$ $= 2\pi(4-x)\left(\frac{x^2}{x^2+1}\right)$ $= 2\pi(4-x)\left(\frac{x^2+1-1}{x^2+1}\right)$ $= 2\pi(4-x)\left(1-\frac{1}{x^2+1}\right)$ Hence, $\Delta V = A \times \Delta x$ $= 2\pi(4-x)\left(\frac{x^2+1-1}{x^2+1}\right)\Delta x$	Solution which attempts to find the elemental volume ~ correctly stating radius and height ~ but failing to derive the desired result
E7 (e) (ii)	$= 2\pi (4-x) \left( 1 - \frac{1}{x^2 + 1} \right) \Delta x$ $V = \lim_{\Delta x \to 0} \sum_{x=0}^{2} 2\pi (4-x) \left( 1 - \frac{1}{x^2 + 1} \right) \Delta x$ $= 2\pi \int_{0}^{2} (4-x) \left( 1 - \frac{1}{x^2 + 1} \right) dx$ $= 2\pi \int_{0}^{2} \left\{ 4 - \frac{4}{x^2 + 1} - x + \frac{x}{x^2 + 1} \right\} dx$ $= 2\pi \left[ 4x - 4 \tan^{-1} x - \frac{x^2}{2} + \frac{1}{2} \ln \left( 1 + x^2 \right) \right]_{0}^{2}$ $= \pi (12 - 8 \tan^{-1} 2 + \ln 5) \text{ unit}^{3}$	Correct solution
		OR Solution which correctly evaluates the volume based upon incorrect assumptions

ю

Year 12	Mathematics Extension 2	TRIAL Examination 2005	
Question N	The state of the s		
	Outcomes Addressed in this Question		
para	es problems involving permutations and combinations, inequalities, po- metric representations		
E2 chuc	ses appropriate strategies to construct arguments and proofs in both co		
Outcome	Solutions	Marking Guidelines	
PE3 (a)(i)	The circle through $D$ , $B$ and $X$ has centre $A$ , since $AD = AB = AX$ . Hence $DAX$ is a diameter. Hence $\angle DBX = 90^{\circ}$ (angle in a semicircle).	2 marks: Writes correct argume 1 mark: Recognises that D, B at X lie on a circle centred at A.	
PE3(a)(ii)	By the converse of the angle in a semicircle, since $\angle DPX$ is a right angle, the circle with diameter $DAX$ also passes through $P$ .  Hence $AP = AB$ (radii).	3 marks: writes correct argumes 2 marks: argues that the circle with diameter DAX also passes through P without giving reasons 1 mark: Attempts to determine 2	
PE3 (b)(i)	Since $a \neq b$ , $a - b \neq 0$ , so $(a - b)^2 > 0$ Hence, $a^3 - 2ab + b^2 > 0$ $a^2 + b^2 > 2ab$	1 mark: Gives appropriate explanation.	
РЕЗ(b)(ii)	From (i), $a^2 + b^2 > 2ab$ $b^2 + c^2 > 2bc$ and $a^2 + c^2 > 2ac$ . Adding, $2(a^2 + b^2 + c^2) > 2(ab + ac + bc)$ $a^2 + b^2 + c^2 > ab + ac + bc$	2 marks: Correctly derives the inequation  1 mark: Provides an unfinished derivation of the inequation, showing $b^3 + c^2 > 2bc$	
- РЕЗ(b)(iii)	Let $A = ab$ , $B = bc$ and $C = ac$ Then $A$ , $B$ and $C$ are distinct positive numbers, and from (ii), $A^2 + B^2 + C^2 > AB + AC + BC$ Substituting, $a^2b^2 + b^2c^2 + a^2c^2 > (ab)(bc) + (ab)(ac) + (bc)(ac)$ . Now $(ab)(bc) + (ab)(ac) + (bc)(ac) = abc(a + b + c)$ Hence, $a^2b^2 + b^2c^2 + a^2c^2 > abc(a + b + c)$ $\frac{a^2b^2 + b^2c^2 + a^2c^2}{a + b + c} > abc$	2 marks: Establishes result  1 mark: Obtains correct inequals for $a^2b^2 + b^2c^2 + a^2c^2$	

	Question 7 cont'd	- L1
E2' (e)	Step 1: Show true for $n=1,2$	
l	$T_1 = 3^{1-1} + 2 = 3$ $T_2 = 3^{2-1} + 2 = 5$	5 marks : complete solution
	12=3 +2=5	
	Step 2: Assume true for $n = k$ , and $n = k - 1$ $T_k = 3^{k-1} + 2$ is	4 marks : substantially correct solution
	$T_{k-1} = 3^k + 2$	3 marks: significant progress towards correct solution
-	Step 3: Prove true for $n = k+1$	2 marks: attempts to follow the
	ie prove $T_{k+1} = 3^k + 2$ is true $T_{k+1} = 4T_k - 3T_{k+1}$	process of mathematical induction but fails to make
	$=4.3^{k-1}+8-3.3^{k-2}-6$	significant progress
	$=4.3.3^{4-2}-3.3^{4-2}+2$	1 mark : Shows true for
	$= 3^{k-2}(12-3)+2$ $= 3^{k-2}3^2+2$	numerical value of n only
1	= 3* +2	
1	Step 4	·
	if true for $n = k - 1$ , k then true for $n = k + 1$ but true for $n = 1, 2$	
	∴ true for $n = 2 + 1 = 3$ , $n = 3 + 1 = 4$ , etc ∴ true for all integer values of $n$ .	
		` , ,
Ī		~
,		
L		

Year 12	Mathematics Extension 2	TRIAL Examination 2005				
Question N	No. 8 Solutions and Marking Guidelines	2007				
	Outcomes Addressed in this Question					
bara	PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations					
Outcome	Solutions	Marking Guidelines				
(a)(i) PE3	$\int_{\pi}^{2\pi} \frac{dx}{\sqrt{x}} = \left[2\sqrt{x}\right]_{\pi}^{2\pi}$ $= 2\sqrt{2n} - 2\sqrt{n}$ $= 2\sqrt{n}\left(\sqrt{2} - 1\right)$	2 marks : correct soltion 1 mark : substantially correct.				
(a)(ii)(a) PE3	The upper rectangles have area greater than the integral, so $\int_{a}^{2n} \frac{dx}{\sqrt{x}} < \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n-1}}$ Adding $\frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{n}}$ to both sides, and using (i) gives $2\sqrt{n}(\sqrt{2}-1) + \frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} = \dots \oplus$	4 marks: Establishes result 3 marks: Substantially correct - Derives inequalities ⊕ and ⊕ (or equivalent) without final inequality				
	The lower rectangles have area less than the integral, so $\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \ldots + \frac{1}{\sqrt{2n}} = \frac{1}{\sqrt{n}}$ if $\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \ldots + \frac{1}{\sqrt{2n}} < \int_n^{2n} \frac{dx}{\sqrt{x}}$ if $\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \ldots + \frac{1}{\sqrt{2n}} < 2\sqrt{n}(\sqrt{2}-1) = \ldots $ From $\Omega$ and $\Omega$ we get $2\sqrt{n}(\sqrt{2}-1) + \frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{n}} < S_n < 2\sqrt{n}(\sqrt{2}-1)$ if $2\sqrt{n}(\sqrt{2}-1) + \frac{1-\sqrt{2}}{\sqrt{2n}} < S_n < 2\sqrt{n}(\sqrt{2}-1)$	2 marks: Partially correct – eg, establishing $S_{n} < \int < 2\sqrt{n}(\sqrt{2}-1)$ 1 mark: establishing one inequality correctly.				
(a)(ii)(β) PE3	When $n = 10^8$ , $S_n \approx 8284 \cdot 2712$ on substitution into result from (ii)( $\alpha$ )	1 mark : correct result				
•						

	Question 8 continued		
	C P P	T	
(b)(i) PE3	$\angle AET = \angle ADB$ $\angle ADB = \angle FAT$ $\therefore \angle AET = \angle FAT$ Also, $\angle ATF = \angle ETA$ So, $\triangle TFA   \triangle TAE$	(corresponding, CT DB)  (∠ between chord and tangent equals ∠ in alternate segment)  (both = ∠ADB)  (common)  (equiangular)	3 marks: writes correct argument. 2 marks: incomplete, but relevent argument. 1 mark: recognises relevent data without constructing an argument
(b)(ii) PE3	$\frac{TA}{TE} = \frac{TF}{TA}$ $\therefore TE.TF = TA^{2}$ But $TA = TB$ $\therefore TE.TF = TB^{2}$	[scale of ratios of similar $\Delta$ 's in (i)] (tangents from an external point are equal)	2 marks: writes correct argument. 1 mark: incomplete, but relevent argument.
(b)(iii) PE3	$\angle BTE = \angle FTB$ $\frac{TE}{TB} = \frac{TB}{TF}$ $\therefore \triangle EBT \Delta BFT$	(common) (from (ii)) (2 pairs of corresponding sides are in proportion and their included angles are equal)	2 marks: writes correct argument. 1 mark: incomplete, but relevent argument.
(b)(iv) PE3	∠EDB = ∠FBT  ∠FBT = ∠BET  ∠BET = ∠EBD  ∴ ∠EDB = ∠EBD  ∴ △DEB is isosceles	(∠ between chord and tangent equals ∠ in alternate segment) (corresponding, ΔΕΒΤ¶ΔΒFΤ) (alternate, CT∥DB) (base angles equal)	1 marks: writes correct argument.

